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Using only certain easily computable o-subgradients, an implementable con­
vergent algorithm for finding the minimizer of a non-differentiable objective
function subject to a finite number of linear constraints in d-dimensional space is
given. The particular objective function consists of the pointwise maximum of a
finite system of pseudoconvex functions. At each iteration cycle certain projections
are computed. The negatives of these direclion~ are feasible directions of strict
descent for the objective function. The convergence of the algorithm is proved. The
algorithm has also been numerically tested. 19R7 Academic Press. Inc

1. INTRODUCTION

This paper presents an implementable algorithm for minimizing a certain
·type of non-differentiable pseudoconvex function subject to a finite collec­
tion of linear constraints in [Rd. We actually encountered this particular
form of the problem in a certain stochastic logistics model, though the
abstract problem is an obvious generalization of the problem in [11 J and
others. The motivation and the derivation of this model will appear in
Myhre and Sreedharan [5]. The approach we take is motivated by
Sreedharan [11,12, 13J, Dem'yanov and Malozemov [IJ, and Rosen [9].
The algorithm proposed here avoids the possibility of "jamming," a
situation where the generated sequence clusters or even converges to non­
optimal points. The algorithm is a generalization of one in Sreedharan
[11 J, and so may be viewed as constrained counterparts of algorithms of
Lemarechal [3J and Wolfe [14]. We take the point of view of facing non­
differentiability directly. Thus we arrive at lower dimensional subproblems,
instead of a single high dimensional problem.

In Section 5 we have included some development of the required
optimality criteria generalizing some criteria in [1 J, due to our inability in
finding these in the literature. We prove the convergence of the algorithm.
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The algorithm was also tested numerically as applied to the logistics model
(See [5 J).

2. PROBLEM

In this paper we denote the standard Euclidean inner product of two
vectors in IR" by simply juxtaposing them. The corresponding Euclidean
length is denoted by I . I. Let a l E IR" and hI E IR be given for i = 1,... , m. The
feasibility set

x =( X E 1R"laix:( hi' i = l.. .. , m}, (2.1 )

is assumed to be nonempty but not necessarily bounded. Before we
describe the objective function let us remind the classic definition of a
pseudoconvex function defined in a neighborhood of X. See Mangasarian
[4J or Ponstein [8]. A function/defined in a neighborhood of Xis said to
be pscudoconvcx on X iff / is differentiable in a neighborhood of X and

Vx, yEX, V'/(x)( y - x) ~ 0 =/( y) >/(x).

l is said to be strictly pseudoconvex on X iff f is differentiable In a
neighborhood of X and

Vx, yEX, xi'y, V'/(x)( y - x) ~ 0 =f(y) >f(x).

Suppose that we are given pseudoconvex, continuously differentiable
functions /1 ,· ..,r on X and let

f(x)=maxU;(x)ll :(j:(r}. (2.2)

Such a function / is not differentiable on X except in trivial cases. The
problem is to minimize f(x), subject to the constraint x E X. Symbolically
we have

{
aix:( hi'

(P) /(x)(min).

We shall refer to this as problem (P).

i= 1, ... ,m
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3. NOTATION

Let x E X and ;; ~ O. We define the sets of indices I, (x) and 1, (x) by
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(3.1 )

(3.2)

Note that

(3.3)

and

(3.4 )

III (.y) is an enumeration of the binding (i.e., active) constraints at x and
III (.y) is the index set of binding maximands at x. So I,(x) and 1, (x) are
the indices of I:-binding (i.e., almost active) constraints and maximands,
respectively. With the help of these index sets we define the following
convex subsets of [Rd;

and

C,(Y) = cone ((/, Ii E I,(x)},

K, (x) = conv (Vt;(xJli E l,(x)}.

(3.5)

(3.6)

Here and throughout this paper we denote by cone S the convex cone
generated by set S with apex at 0 and by conv S the convex hull of the set
S.

For any nonempty closed convex subset S of [Rd there is a unique point
(/ E S of least norm (i.e., nearest to the origin), which we denote by N[S].
The point (/ is characterized by the inequality

I/x E S. (3.7)

For purposes of proving that the algorithm of the next section is con­
vergent, we shall make an additional assumption on the objective
functiont: namely thatfbe coercive 0/1 X, the feasibility set. One says thatf
is coercive on X iff x, E X, lx, I ---> x implies that/(x,) ---> Cf~. Note that this
condition is automatically satisfied, if X is bounded.
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4. ALGORITHM

In this section we present our c;-subgradient projection algorithm for
solving problem (P). Discussions of the different steps of the algorithm are
given in Sections 4.2 to 4.7.

4.1 AL.GORITHM

Step 0.

Step I.

Step 2.
proceed.

Step 3.

Step 4.
proceed.

Step 5.

Step 6.

Start with arbitrary X o EO X and c;o > 0. Set c: = 1;0 and k = 0.

Compute Yo = N[Ko(.ed + Co (.edJ

If Yo = 0, STOP; x, is a solution of problem (P). Otherwise

Compute .1', = N[K,(x,) + C,(xdJ

If Iy, I:' > I: set 1:, = I;, .1, = .1', and GO TO Step 6; otherwise

Replace I; by c:/2 and RETURN to Step 3.

If there exists i such that {liS, < 0, define it, by

If no such i exists, set it, =:0.

Step 7. Find (J" EO [0, it,], a, < C£ such that there exists

If no such a, exists, set a, = it,. (It will be shown III Lemma 6.5 that
O<a,<x.)

Step 8. Define x, + 1 = X, - a,s,. Increment k by J and RETURN to
Step I.

4.2. Step 5 can be replaced by the statement: Replace £ by £/l5 q , where
((5,,) is any sequence of numbers such that 15" > I, Vq and is uniformly
bounded away from I. Thus we found it convenient to set 15

4
= 10, Vq in

similar problems (see [6] and [10J)
4.3. One may also wish to reset D = EO at the end of Step 2 during the

early cycles of the algorithm. This should avoid taking small steps when
not "near" the optimal solution. After these iterations we revert back, i.e.
set I; = 1;0 in Step 0, but instead of an arbitrary X o EO X we take Xo to be the
last available x, and proceed from Step °onwards without any change
from the algorithm as given. This alteration has only an insignificant effect
on the proof of convergence of the algorithm.
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4.4. Obviously, in practive Step 2 will be replaceced by the statement:
STOP, if IYo I ~ 1], where I] > 0 is a stopping rule parameter.

4.5. Quadratic Programs

Steps 1 and 3 call for computing Y, the projection of the origin on the set
K, (Xk) + C, (Xk), i.e., find Y, E K, (Xk) + C, (x k) of least norm. This can be
accomplished by a special quadratic program. In fact, we seek

(4.5.1 )
!

I. L: ;'iai+ L: P/Vfi(X k )1

2

(min).
lElr (,</.;) jEJr,(XJ,;)

We can rewrite (4.5.1) more compactly as follows. Let card I, (x k ) = p and
card J, (x k ) = q. Let e be the row vector of dimension q, all of whose com­
ponents are unity. Finally, let M be the m x (p + q) matrix whose first p

columns are ai' iEI,(xk ) and the remaining q columns are Vfi(x k ),

j E J, (xd. Now (4.5.\) is the same as

[0, e] u= \, u~O,

uM'Mu (min),
(4.5.2)

where M' denotes the transpose of M.
Rubin [10] has the same CJxd as we have here, but not the same

K,(x k ). The K,(x k ) in Owens [6] is similar to ours here. So any of the
methods used in [6] or [10], or even some variations thereof like those in
Lawson and Hanson [2] are applicable. Refer to Myhre and Sreedharan
[5] for details of computational experience.

4.6. The Line Search

Let us now consider the determination of :J.k in Step 7 of Algorithm 4.1.
By Lemma 6.5 (few pages hence) an alternate definition of :J.k is

eLk = arg minf(xk - :J.sd,
o~?: ~ 'ik

(4.6.\ )

where it is shown that 0 <:J.k < 00, whenever Sk oF O. The calculation of :J.k
using (4.6.1) can be accomplished by employing a Golden Section search
technique as applied to a univariate unimodal function, e.g., the IMSL sub­
routine ZXGSP. See Owens [6], Myhre and Sreedharan [5] for further
details.

Note that :J. k is not unique, in general. Any !Y. k found in Step 7 is sufficient

640'511-3
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to guarantee convergence of (x k ), in the sense that any cluster point of (.'I'd
is a minimizer of problem (P). Yet, in practice one would generally pick the
smallest el. k in case of multiple candidates. But if each f is in addition
strictly pseudoconvex then Cl.k is unique and then the whole sequence (x k )

converges to the unique minimizer of problem (P).
4.7. Due to inequality (7.1.1) of Lemma 7.1 below, we will see that

members of K,(xd may rightly be called I:-subgradients of f in analogy
with the convex case. Moreover, Sk of Step 4 of the algorithm is the least
distance vector between the sets - KJ'k) and ('I (.'I'd·

5. OPTIMALITY CONDITIONS

In this section we extend certain optimality conditions that apply to a
convex program. In fact, Theorem 5.9 below, the main result of this section,
is a generalization of Theorem 3.1 in Chapter 4 of Dem'yanov and
Malozemov [1]. We need this result to show that the stopping criterion in
Step 2 of Algorithm 4.1 is well chosen. Throughout this section we do not
require f to be coercive on X, though we shall require this hypothesis in
our algorithm and for its convergence proof given in Sections 6 and 7. We
first record some properties of the index sets I, and JI for use in this and
subsequent sections.

5.1 LEMMA. To each X E X and I: ? 0, there is a neighborhood V of x such

that

and

II ( y) C II (x ),

J, ( y) c J, (x ),

\lyE V n X,

\lyE V n X

(5.1.1 )

(5.1.2)

5.2 LEMMA. Given x E X, there exists p > °such that

1,(.'1') = 10 (.'1'), JJx) = Jo(x) for °~ <: ~ p. (5.2.1 )

5.3 LEMMA. Let Xk E X and (Xk) a subsequence of (x k ) such that
Xk--->XEX Assume that (B k,) is a sequence such that f,k'lO. Then
I'k(xk,)cIo(.x) and J'k(xdcJo(x),for all sufficiently large k'.

5.4 LEMMA. Let Xk E X and <:d I: > 0. Let (x k') be a subsequence of (xd
such Xk,--->XEX Then Io(.x)cllk,(xk ) and Jo(x)cJlk(Xk ), for all k'
sufficiently large.
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5.5 LEMMA. Given x E X and I: > 0, there exists b >°such that

Jo(x)cJ1(y), whenever Ix-yl <6, yEX.
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The above lemmas are Lemmas 5.1 through 5.5 of [12J, where complete
proofs are provided. Strictly speaking, the statement regarding the sets
Jo(x) and J q (x.) in Lemma 5.3 above, does not appear in Lemma 5.3 of
[12]. Its proof is entirely analogous to that concerning the sets Jo(x) and
J,",(X.) in Lemma 5.3 of [12].

It is standard practice to call points in Xfeasible points. Due to the con­
vexity of X, hE [Rd is a feasible direction at x E X iff there exists some CJ. > °
such that x + (xh E X, i.e., x + exh is a feasible point. The following lemma
characterizing the feasible directions at a feasible point is well known.

5.6 LEMMA. Let x E X. Then h is a feasible direction at x iff aJI ~ 0,
Vi E Jo(x).

We will need the following lemma in the proof of Theorem 5.9 and also
in subsequent sections.

5.7 LEMMA. Let h be a feasible direction at the feasible point x, and leI

Then there exists 6>°such that

fix +exh) <fix), VexE(O, 6].

(5.7.1 )

(5.7.2)

Prool Since h is a feasible direction at x, due to Lemma 5.6 and the
convexity of X, there exists b 1 > °such that x + exh E X, °~ex ~ b I' Because
of (5.7.1), there exists 62>0 such that for 0<ex~b2'

(5.7.3 )

Also there exists a neighborhood V of x, such that

1;( y) <fix), VNJo(x), VyEVnX. (5.7.4 )

Due to (5.7.3) and (5.7.4), there exists 6>0, 6~min(61,62) such that

Vj= 1,... , r, VC<E(O,b].

By the definition of f then (5.7.2) follows, completing the proof of the
lemma.
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5.8 THEOREM. Every local minimizer oj' the problem (P) is a global
minimizer. Moreover, ij' evry I; is strictly pseudoconvex, then at most one
global minimizer exists.

Prool Let.X: E X be a local minimizer of f on X and let h Ie 0 be such
that .X: + hEX. We shall show that IF + h) ~f('X:), i.e., .X: is a global
minimizer. Due to the convexity of X,X: + iXh E X for O:(iX:( I. Since .X: is
local minimizer, there exists (), 0 < (j ~ 1 such that

f(·X: +iXh) ~f(·X:), "h E [0, 6]. (5.8.1 )

By Lemma 5.1 we may, by reducing () if necessary, assume that

i o(.X: + iXh ) c i o(X: ), 10 (x: + iXh) c 10 (.X: ), ViXE[O,()]. (5.8.2)

From (5.8.1) and (5.8.2) we see that

This shows that there exists; E i o(.x:) such that

"h E [0, ()].

Va E [0, ()].

Due to the differentiability oft; atx:. this yields

Now invoking the fact that I, is pseudoconvex we get

So

IF+ h) ~/lX:+ h) ~/l\')=/F),

(5.8.3 )

(5.8.4 )

which proves that x: is a global minimizer.
If every I; is strictly pseudoconvex. then strict inequality prevails in

(5.8.3) and therefore in (5.8.4) also, proving that x: is the unique global
minimizer. The proof of the theorem is now complete.

5.9 THEOREM. .X: EX solves the problem (P) iff 0 E Ko(.X:) + Co (.X:).

Proof: In view of the previous theorem it is sufficient to show that.\' is
a local minimizer iff 0 EKo (·\') + Co (.\').

"On/I' if" part: Assume that 0 ¢ K o(.\') + Co (.\'). We will show that .\' is
not a local minimizer. Since 0 ¢ Ko(.\') + Co (.\'), there exists hE [Rd such that

uh + I'h < O. VI'EC,(·X:)·
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and

Vf;(.x) h < 0, (5.9.1 )

(5.9.2)

By Lemma 5.6 and (5.9.2) we see that h is a nonzero feasible direction at x,

whereas by Lemma 5.7 we see that there exists 6>°such that

f(',: + Cf.h) <!lx), VCf.E(0,6].

So .': is not a constrained local minimizer off; and the proof of the "Only
if" part is complete.

"If" part: We will show that if .x is not a local minimizer, then°rf: K(l(.':) + C(l(.x). Using Lemma 5.1, let us choose a neighborhood V of.':
such that

"Ix E V n X. (5.9.3 )

Also since .': is not a local minimizer of f to each f. > 0, there exists a
feasible direction h, °< Ihl :( f., such that

f(.x + h) <[(.':). (5.9.4 )

From (5.9.3) and (5.9.4) we see that there exists a nonzero feasible direc­
tion h, such that .x + h E V and (5.9.4) holds. So

max (fl("': + h)l./ E Jo(·x)} =f(.': + h) <f('':)·

Since~(.x)=jlX),VjEJo(.X), this yields the inequality

But since each f is pseudoconvex,

Vf~(.x) h < 0, (5.9.5 )

Also since h is a feasible direction at "x, by Lemma 5.6

(5.9.6)

Now if°E K o(.x) + CO U), then there exists, }'j;:' 0, Pi;:' 0, D. j = 1,./ E Jo(.x),
iE/o(.X) such that

(5.9.7)
jE Jut-'-:) i E fu c\')
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Since some if is positive, we find, upon taking the inner product of both
sides of Eq. (5.9.7) with h and using (5.9.5) and (5.9.6) that 0<0, which is
absurd. The theorem is now completely proven.

5.10 COROLLARY. Assume fimher rlwr each .f; in the ahove theorem is
srricrly pseudoconvex. Then .I: E X is the unique solurion o( (P) iff
OE Ko(\') + Co(\').

Prout: This follows immediately from Theorems 5.9 and 5.8.
As mentioned earlier, Theorem 5.9 with the assumption that each f; is

convex is stated and proved in [1].

6. FEASIBILITY OF THE ALGORITHM

In this section we show that the various steps of the algorithm are well­
defined and implementable. In this and the subsequent section we will have
the standing assumption that I is coercive on X and that II ,...,f~ are con­
tinuously differentiable, pseudoconvex functions on X.

6.1 LEMMA. The sropping crirerion in Step 2 o( Algorirhm 4.1 is well
chosen.

Proot: Ifro = 0, then 0 E Ko(xd + Co (,d. Theorem 5.9 now shows rhar
x k is a minimizer off

6.2 LEMMA. Step 5 o( the Algorithm 4.1 is nor executed infinirely often in
anyone iteration.

Proot: If Step 5 is executed infinitely often in a certain iteration, then
the index k remains unchanged from that iteration onwards. By
Lemma 5.2, there exists arbitrarily small D > 0 such that I,(xd = Io(xd and
J,(xk)=JO(X k). For such I: then K,(xd+C(xd=Ko(xd+Co(\d. This
implies that Yo = v, for arbitrarily small I: > 0. Also I: 10, since Step 5 is
executed indefinitely. So )', -> 0, which shows that Yo = 0. But in this case
we would not have reached Step 5 at all, a contradiction.

6.3 LEMMA. I(sk #0, then -Sk is a Ieasihle direction olsrricr descent at

X k ·

Proot: Since

and
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from the least norm inequality (3.7) we see that
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(6.3.1 )

and

(6.3.2)

Now Ilk (xd =:> 10 (.:r k ) and J
"

(xd =:> Jo(.:rd, so that by (6.3.1) and (6.3.2) we
get the inequalities

(6.3.3)

and

(6.3.4 )

This shows that -Sk is a feasible direction at Xk and that inequality (5.7.1)
holds with h = ~Sk in the notation of Lemma 5.7. So by Lemma 5.7 there
exists 15 > 0, such that Xk - :J.Sk E X for O:::;:J.:::; 15 and

V:J. E (0, 15].

The proof of the lemma is now complete.

6.4 LEMMA. Let Sk # 0. The ak defined in Step 6 of Algorithm 4.1 has the
property that

(6.4.1 )

Proof: Let us define 15 by 15 = sup{:J. E IRlxk - :J.Sk E X}, then by
Lemma 6.3 we see that there exists CJ. >°such that Xk~ :J.Sk E X, so that
15>0, possibly +OCJ. Sincexk~:J.skEXiffaixk-:J.aisk:::;h"Vi=I, ... ,m, we
now see the equivalence of 15 with ak as defined in Step 6 of Algorithm 4.1.

6.5 LEMMA. Let Sk # °and define cp on interval.! hy cp(a) = f(x k - aSk),
where .J = [0, OCJ) if ak = OCJ, and .f = [0, ak] (f i k < OCJ. {fik = OCJ, or in
case i k < OCJ and i k is not a minimizer of cp on .f, then CJ. k, Zk sati~:lying

Step 7 of Algorithm 4.1 exists. Moreover, if ak, Zk satisfying Step 7 have heen
found then ak is a minimizer of cp on .f.

Proof By Lemma 6.3, 0 is not a minimizer of cp on .f. The hypotheses
of this lemma and the fact that f is coercive implies that there exists a
minimizer ak E (0, i k ), i.e., there exists I: > °such that

f( y + ASk) ;:, f( y), (6.5.1 )



38 V. P. SREEDHARAN

By reducing E > 0 if necessary (using Lemma 5.1), there exists j, ,j2 E 10 (y),
(/, =j2 permitted) such that

I;, (Y + ASk) ~/;, ( y),

f;, (y + ASk) >/;, (y),

From this we see that

and VI;, (y) Sk :( O.

We now take Zk to be an appropriate convex combination of VI;, (y) and
V/;,(Y) so that ZkSk=O. Since j"j2EJO(Y), ZkEKOCy,); completing the
proof of existence of (lk and Zk in Step 7.

To prove the second part of the lemma, suppose that(lkl Zk satisfying
Step 7 has been found. We shall show that (lk is positive, and that (lk is a
minimizer of (p on [0, ri k ].

Let Y=Xk-(lk'\·k' Then there exists I_/?O, L)/= l,jEJoLv) such that

Zk = LAjV/;(Y)·

(6.5.2)

Since each.li is pseudoconvex this implies that

and

f;,( y - )Sk) ~f;, (y),

if rik < e.G. But if rik = x, then

I;, (Y - ASk) >/;, (y),

(6.5.3 )

(6.5.4 )

(6.5.5)

Using the definition off and recalling that because j, ,j2 E Jo(y), 1;, (y) =
I;,(y)=f(y), when rik<x we find from (6.5.3) and (6.5.4) that

f( Y + I.S k)?f( y), 0:( 1- :( (Xkl (6.5.6)

and

When ri k =x, (6.5.7) is replaced by

f( Y - IS k ) ? f ( y), 0:( I. < x.

(6.5.7)

(6.5.8)
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If r:t. k = 0, then y = X k and (6.5.7) or (6.5.8), whichever is applicable,
asserts that f(x k - ASk)); f(xd, 0 ~ A~ cX k < 00 or 0 ~ A< 00, as the case
may be. This contradicts Lemma 6.3, where we proved that - SkIS a
feasible direction of strict descent at X k . So r:t. k is positive.

Inequalities (6.5.6), (6.5.7), and (6.5.8) assert that if cX k < 00, then

whereas if cX k = 00, then

O~:x<oo.

In other words, :X k is a minimizer of qJ on [0, cX k ], if cX k < 00; whereas if
i k = 00, then:Xk is a minimizer of qJ on [0, (0).

6.6 COROLLARY. :Xk is positive and finite. Moreover, :Xk is unique if each
f; is strictly pseudoconvex.

6.7 LEMMA. Let Sk#O and Xk+l=Xk-:XkSk as in Step 8 of
Algorithm 4.1. Thenf(xk + i)<f(xk).

Proof This is clear from Lemmas 6.3 and 6.5.

6.8 LEMMA. The sequence (xk) generated by Algorithm 4.1 is bounded.
Moreover, f takes the same value v=limk~xf(xk) at all cluster points of
(X k ).

Proof By Lemma 6.7, the sequence (f(xk)) is clearly bounded from
above. Since f is coercive on X, it follows that (xd is bounded. Since the
sequence (f(xk)) is monotone decreasing, all its subsequences converge to
the same limit v. So, if (x k') is a subsequence of (x k) such that Xk --+ x, then
f(x) = v.

7. CONVERGENCE OF THE ALGORITHM

In the previous section we showed that the various steps in the algorithm
are implementable and that f decreases at each iteration. We now turn to
the task of proving that the algorithm converges to a solution of the
problem in the sense that every cluster point of the generated sequence is a
minimizer of f The reason for assuming that f is coercive is to ensure that
(xk) has at least one cluster point as guaranteed by Lemma 6.8. In fact, any
hypotheses on f and X which will do this is sufficient, say for example that
the set {xEXlf(x)~f(Xk)} is bounded, for some k.
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7.1 LEMMA. LeI I:? 0 and u E K, (x). Suppose Ihal x +hEX and uh ? O.
Then

f(x+h)?f(x)-L

Proof: Since there exists A,? 0, I)., = 1, j E J, (x) such that

u = I )./vt;(x),
i E".1{ (Y 1

(7.1.1 )

we see that there is somejEJ,(x) with the property Y'J;(x)?O. SinceJ; is
pseudoconvex, fi(x + h) >fi(x) ?f(x) - D. Hence f(x + h) ?f(x) - L

7.2 COROLLARY. LeI uEKo(x), x+hEX and uh?O. Then
f(x + h) ?f(x).

7.3 LEMMA. Let 0 he a cluster point of the sequence (Sk) and i any
cluster point of (x k ). Then.\' is a minimizer off

Prool We pass to corresponding subsequences (Sk) and (Xk) such that
Sk ---.0 and Xk ---. x E X. We shall show that both x and .X' are minimizers of

l
Let y E X be arbitrary. Then

So

Let us write

Vi E Io(x). (7.3.1 )

(7.3.2)

Note that t: k 10, so that by Lemma 5.3, for all sufficiently large k' we have

I'k (xk)cIo(.)() and J,,(Xk)cJO(X). (7.3.3)

The first inclusion in (7.3.3) yields the containment

(7.3.4 )

whereas the second inclusion in (7.3.3) gives the containment

(7.3.5)

So, there exists Aj .k ? 0, Ii Aj.k' = 1, j E J0 (x) such that

Uk = I )·j.kY'J;(Xk"!-
jEJo(x)
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By passing to a further subsequence, again denoted by (k'), we can require
1'1' -> }'i as k' ->X;, for each i E io(x). By the continuity of VI; at x, then

u A -> U = L AIV/;(x) E Ko(x).
IF Jo(s)

By (7.3.4), II'AECO(X) so that by (7.3.1) we see that

(7.3.6 )

W'. (7.3.7)

Note that in case Io(x) is empty then CoC,)= {OJ and every H'A=O, so
(7.3.7) holds in this case also. By (7.3.2) we now see that

~SA'(Y-X), by (7.3.7).

Allowing k' -> CfJ, since SA ->°we arrive at the relation u( Y - x) ~ 0. Since
uEKo(x), by Corollary 7.2 we now conclude thatf(x):(f(y). But since x
and .\' are both cluster points of (xA), by Lemma 6.8 we see that
f(x) =fF), completing the proof of the lemma.

7.4 LEMMA. If the sequence (f;A) defined in Algorithm 4.1 converges to
::ero and X is anv cluster point of (xd then X is a minimizer off

Proof By Lemma 6.2, Step 5 of the algorithm is executed finitely often
in each iteration. Hence a subsequence (GAl of (GAl can be found such that

and

where Y, was defined in Step 3 of the algorithm. Since GA-> 0, Y" -> 0. We
replace all the occurrences of SA' in the proof of the previous lemma by Y"
and repeat the reasoning therein to see the validity of the present lemma.

7.5 LEMMA. The sequence (SA) is hounded.

Proof Since K,,(Xk) + C,,(xk):::::J KO(Xk),

ISA 1= IN[K,,(x A ) + C,,(.'A)JI,

:( IN[KoC'dJ I,

:( max {IVf;(xdl Ii E i oC'A)}'

:(max{IVh(xA)III :(j:(rj,

:( max max IVf;(x)l,
,-c Xu 1 ~j:S;,
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where Xo is the closure of the set {xo, x I' x 2 , ... }. The right-hand side of the
above inequality is finite due to the fact that each f; is of class Cion Xo,

which by virtue of Lemma 6.8 is compact.

7.6 LEMMA. If the sequence (.Id is hounded away from zero, then the
sequence (1. k ) converges to zero.

Proal Suppose that 1.k -;-. O. Since 1. k ISk 1= IXk+ 1- Xk I, by Lemma 6.8
we see that 1.k ISk I is bounded above. But (Sk) is bounded away from zero
and hence the sequence (ad is bounded. Let us then pass to corresponding
subsequences (.I'd, (1..1 and (xd such that Sk --> .I' "'" 0, 1.k --> :x > 0 and
Xk-->XEX. Now

So x - as and x are both cluster points of the sequence (Xk)' By
Lemma 6.8, we then have

f(x-as)=f(x). (7.6.1 )

Since (.I'k) is bounded away from zero, form Algorithm 4.1 we see that
there exists I: > 0 such that £k = £ for all sufficiently large k. Passing to a
further subsequence of (k'), again denoted by (k ' ), we may assume that

Recall that

IJxd=1 and Vk'. (7.6.2)

(7.6.3 )

Since Sk·EK,(xk)+C,(Xk), we see that a,+skEK,(Xk·)+C,(Xk·)' ViEf.
Also V!j(xk)EK,(xk·)cK,(xd+CJxd, VjEf. So, by (3.7) we get

(a ,+sk)sk?ISkI 2
, Vi E I, (7.6.4)

and

V!;(Xk)Sk? ISkI2, Vj E1. (7.6.5)

Allowing k' -->XJ in (7.6.4) and (7.6.5) we arrive at the inequalities

and

a,s?O, Vi E I,

VjE 1.

(7.6.6 )

(7.6.7)
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But now c> °and Xk ---> X. SO by Lemma 5.4 and (7.6.2) we see that
lo(x)cl and Jo(x)cJ. From (7.6.6) and (7.6.7) we get the inequalities

and

a,s~O, (7.6.8)

(7.6.9)

In view of Lemma 5.6 and inequality (7.6.8), - sis a nonzero feasible direc­
tion at x. This fact combined with inequality (7.6.9) and Lemma 5.7 shows
that there exists (j > °such that

f(x-)x)<f(x), Vi, E (0. b]. (7.6.10)

By Step 7 of Algorithm 4.1 and Lemma 6.5

VAE [0, cXkJ n [O,X!). (7.6.11)

Note that cXk'~:Xk and so (cXk ) is also bounded away from zero. Hence
from (7.6.10) and (7.6.11) we conclude that there exists ie, 0 < ;, ~ (j satisfy­
ing (7.6.11) and the condition

(7.6.12)

Allowing k' --->.~ in (7.6.12) yields the inequality

f(x - :xs) ~f(x - AS),

which by virtue of (7.6.10) shows that f(x - :xs) <f(x), contradicting
(7.6.1). So we have to conclude that (:xd converges to zero, and the proof
of the lemma is complete.

7.7. It is of some interest to remark that, if all thelj's were known to be
strictly pseudoconvex, then a simpler argument may be used to complete
the proof of previous lemma after having arrived at equation (7.6.1). For
purposes of clarity, we isolate this fact as a lemma.

7.8 LEMMA. Assume that each.!; is strictly pseudoconvex on X and that x.
x - hEX, h # 0, with f(x) =f(x -- h). Then there exists J1 E (0, I) such that
f(x - ph) <f(x)-

Proof: If not, f(x-ph)~f(x), VJ1E[O, 1]. By Lemma 5.1 we can
choose () E (0, 1) such that Jo (.x: - J1h) c J o(.x:), VJ1 E [0, b]. Since
f(x-J1h)~f(x), there exists jEJo(.X:) such that ,1j(x-J1h)~.!;(x), which
implies that 'Vii (x) h~ 0. Due to the strict pseudoconvexity of Ii' we now
have .!;(x-h».!;(x), resulting in a contradiction so that the lemma
follows.
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7.9. Under the stronger assumptions in the above lemma, we simply
point out that, due to the definition of Xk ,

v;. E [0, ci k ] n [0, W). (7.9.1 )

By Lemma 7.8 we ean choose Ji, 0 < Ji < I such that f(x - Jixs) </(x). Then
by (7.9.1)

Allowing k' -+ x, we get f(x-xs)~f(x-Jixs) and so f(x-xs) </(x),
which contradicts (7.6.1).

7.10 LEMMA. Suppose that the f(Jllowing hold.

(i) There exists E > 0 such that Ek ??- E fCJr all k.

(ii) There exists I] > 0 such that ISk 1 ??-I] for all k.

(iii) S'ome suhsequence (xd oj (x k) converges to x.

Then there is a suhsequence oj (Xk')' again denoted (Xk), such that
lo(xk )= 10 (x)fiJr all k'.

Proof: This is Corollary 5.22 in [II] and follows immediately from
Lemma 5.21 in [II],

7.11 THEOREM. Algorithm 4.1 generates either a terminating sequence
whose last term is a rninimizer oj prohlem (P), or an infinite sequence such
that every cluster point oj this sequence is a minimizer of problem (P).

Proof: In view of Lemma 6.1 we need only consider the case in which
Algorithm 4.1 generates an infinite sequence (Xk)' In this case Sk # 0 for
every k. We intend to show that 0 is a cluster point of (Sk), so that by
Lemma 7.3 the proof of the theorem would then be complete. With a view
of arriving at a contradiction let us assume that there exists I] > 0 such that
ISk I ;:, I] for every k. In view of Lemma 7.4, we can also assume that [;k = E,

for every k. The sequences (x k ) and (sd are bounded by virtue of Lem­
mas 6.8 and 7.5, respectively. So we may pass to corresponding convergent
subsequences such that Xk, -+ x E X and Sk -+ S # O. By Lemma 7.6, (a k )
converges to zero and since Xk' + I = Xk,- ak,sk', we find that X k,+ I -+ x.
Passing to a subsequence of (k'), again denoted by (k'), we may suppose
that there exist index sets I, J, and J' such that

(7.11.1 )

for all k'. By Lemmas 5.1 and 5.4 we see that Jo(xk+dcJoCx:)cJ,(Xk)'
for sufficiently large k'. In view of (7.11.1), we therefore have J' c 1.
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Now using Lemma 7.10 twice, since X k ' -> x and X k ' + 1 -> x, we can find
yet another subsequence, as usual denoted again by (k'), such that

(7.11.2)

for all k'. From (7.11.2) we deduce that'J. k < 'l.k for every k'; for if 'J. k ='l.k,
some nonbinding constraint at X k becomes binding at Xk + 1 and so
lo(xk)etlo(xk I I)' Thus for eaeh k', the vector Zk specified in Step 7 of the
algorithm exists, i.e.,

and (7.11.3 )

Now

Zk EKo(Xk+I)=conv{Vf;(Xktl)!jEJ'),

c conv {Vf; CX'k + 1)Ij E J l·

So there exist AIX ? 0, L} ),jX = 1, j E J such that

Zk= I )'I.kV[j(Xk + I ),
jE J

(7.11.4 )

(7.11.5 )

By passing to yet another subsequence, denoted again by (k'), we can
req uire I'IX -> ),} for every j E J. Let us define Z and i k by

and

Z = I I'/VI;(X),
jE.!

i k = I ),/Vf;(xd·
jE J

(7.11.6 )

(7.11.7)

Since (xk ) and (xk ~ 1) converge to x, by the continuity of VI; at x, we see
that both the sequences (Zk) and (id converge to z. Observe that

ikE K, (xd c K, (Xk ) + CjXk )

and by Step 3 of Algorithm 4.1

So, by (3.7), we get the inequality

(7.11.8 )

(7.11.9 )

Vk'. (7.11.10)

Allowing k' -> CD, we see that

(7.11.11 )
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Finally, we allow k' ---> 00 in the second half of (7.11.3) to get the statement
zs = 0, contradicting (7.11.11). So we conclude that 0 is a cluster point of
(.I'd, thus completing the proof of the theorem.

7.12 COROLLARY. Suppose that each I; is strictly pseudoconvex. Then in
the non-terminating case the whole sequence (x k ) converges to .i the
minimizer oj" problem (P).

Proot: Every cluster point .i of (xd is a minimizer off on X. But due to
the strict pseudoconvexity of the I;'s, .i is unique. So the sequence' (Xk) has
a unique cluster point .i in Xo, the closure of {xo, x J , ••• }, which is compact
by Lemma 6.8. Hence (x k ) converges to .i.
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