ϵ-Subgradient Projection Algorithm

V. P. Sreedharan
Department of Mathematics, Michigan State University. East Lansing, Michigan 48824, U.S.A.
Communicated by E. W. Cheney

Received August 20, 1984; revised June 25. 1985

Abstract

Using only certain easily computable ε-subgradients, an implementable convergent algorithm for finding the minimizer of a non-differentiable objective function subject to a finite number of linear constraints in d-dimensional space is given. The particular objective function consists of the pointwise maximum of a finite system of pseudoconvex functions. At each iteration cycle certain projections are computed. The negatives of these directions are feasible directions of strict descent for the objective function. The convergence of the algorithm is proved. The algorithm has also been numerically tested. © 1987 Academic Press. Inc.

1. Introduction

This paper presents an implementable algorithm for minimizing a certain type of non-differentiable pseudoconvex function subject to a finite collection of linear constraints in \mathbb{R}^{d}. We actually encountered this particular form of the problem in a certain stochastic logistics model, though the abstract problem is an obvious generalization of the problem in [11] and others. The motivation and the derivation of this model will appear in Myhre and Sreedharan [5]. The approach we take is motivated by Sreedharan [11, 12, 13], Dem'yanov and Malozemov [1], and Rosen [9]. The algorithm proposed here avoids the possibility of "jamming," a situation where the generated sequence clusters or even converges to nonoptimal points. The algorithm is a generalization of one in Sreedharan [11], and so may be viewed as constrained counterparts of algorithms of Lemarechal [3] and Wolfe [14]. We take the point of view of facing nondifferentiability directly. Thus we arrive at lower dimensional subproblems, instead of a single high dimensional problem.

In Section 5 we have included some development of the required optimality criteria generalizing some criteria in [1], due to our inability in finding these in the literature. We prove the convergence of the algorithm.

The algorithm was also tested numerically as applied to the logistics model (See [5]).

2. Problem

In this paper we denote the standard Euclidean inner product of two vectors in \mathbb{R}^{d} by simply juxtaposing them. The corresponding Euclidean length is denoted by $|\cdot|$. Let $a_{i} \in \mathbb{R}^{d}$ and $b_{i} \in \mathbb{R}$ be given for $i=1, \ldots, m$. The feasibility set

$$
\begin{equation*}
X=\left\{x \in \mathbb{R}^{d} \mid a_{i} x \leqslant b_{i}, i=1, \ldots, m_{;}\right\}, \tag{2.1}
\end{equation*}
$$

is assumed to be nonempty but not necessarily bounded. Before we describe the objective function let us remind the classic definition of a pseudoconvex function defined in a neighborhood of X. See Mangasarian [4] or Ponstein [8]. A function f defined in a neighborhood of X is said to be pseudoconvex on X iff f is differentiable in a neighborhood of X and

$$
\forall x, y \in X, \quad \nabla f(x)(y-x) \geqslant 0 \Rightarrow f(y) \geqslant f(x) .
$$

f is said to be strictly pseudoconvex on X iff f is differentiable in a neighborhood of X and

$$
\forall x, y \in X, \quad x \neq y, \quad \nabla f(x)(y-x) \geqslant 0 \Rightarrow f(y)>f(x) .
$$

Suppose that we are given pseudoconvex, continuously differentiable functions $f_{1}, \ldots, f_{\text {r }}$ on X and let

$$
\begin{equation*}
f(x)=\max \{f,(x) \mid 1 \leqslant j \leqslant r\} \tag{2.2}
\end{equation*}
$$

Such a function f is not differentiable on X except in trivial cases. The problem is to minimize $f(x)$, subject to the constraint $x \in X$. Symbolically we have

$$
(P)\left\{\begin{array}{l}
a_{i} x \leqslant b_{i}, \quad i=1, \ldots, m \\
f(x)(\min) .
\end{array}\right.
$$

We shall refer to this as problem (P).

3. Notation

Let $x \in X$ and $\varepsilon \geqslant 0$. We define the sets of indices $I_{i}(x)$ and $J_{i}(x)$ by

$$
\begin{align*}
& I_{i}(x)=\left\{1 \leqslant i \leqslant m \mid a_{i} x \geqslant b_{i}-b\right. \tag{3.1}\\
& J_{z}(x)=\{1 \leqslant j \leqslant r \mid f(x) \geqslant f(x)-a\} \tag{3.2}
\end{align*}
$$

Note that

$$
\begin{equation*}
I_{1}(x)=\left\{1 \leqslant i \leqslant m \mid a_{i} x=b_{i}\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{0}(x)=\left\{1 \leqslant j \leqslant r \mid f_{j}(x)=f(x)\right\} . \tag{3.4}
\end{equation*}
$$

$I_{0}(x)$ is an enumeration of the binding (i.e., active) constraints at x and $J_{0}(x)$ is the index set of binding maximands at x. So $I_{8}(x)$ and $J_{8}(x)$ are the indices of 8 -binding (i.e., almost active) constraints and maximands, respectively. With the help of these index sets we define the following convex subsets of \mathbb{R}^{d} :

$$
\begin{equation*}
C_{n}(x)=\operatorname{cone}\left\{a_{i} \mid i \in I_{z}(x)\right\} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{i}(x)=\operatorname{conv}\left\{\nabla f_{j}(x) \mid j \in J_{e}(x)\right\} \tag{3.6}
\end{equation*}
$$

Here and throughout this paper we denote by cone S the convex cone generated by set S with apex at 0 and by conv S the convex hull of the set S.

For any nonempty closed convex subset S of \mathbb{R}^{d} there is a unique point $a \in S$ of least norm (i.e., nearest to the origin), which we denote by $N[S]$. The point a is characterized by the inequality

$$
\begin{equation*}
a x \geqslant|a|^{2}, \quad \forall x \in S \tag{3.7}
\end{equation*}
$$

For purposes of proving that the algorithm of the next section is convergent, we shall make an additional assumption on the objective function f, namely that f be coercive on X, the feasibility set. One says that f is coercive on X iff $x_{k} \in X,\left|x_{k}\right| \rightarrow x$ implies that $f\left(x_{k}\right) \rightarrow \infty$. Note that this condition is automatically satisfied, if X is bounded.

4. Algorithm

In this section we present our ε-subgradient projection algorithm for solving problem (P). Discussions of the different steps of the algorithm are given in Sections 4.2 to 4.7.

4.1 Algorithm

Step 0. Start with arbitrary $x_{0} \in X$ and $\varepsilon_{0}>0$. Set $\varepsilon=\varepsilon_{0}$ and $k=0$.
Step 1. Compute $y_{0}=N\left[K_{0}\left(x_{k}\right)+C_{0}\left(x_{k}\right)\right]$.
Step 2. If $y_{0}=0$, STOP $; x_{k}$ is a solution of problem (P). Otherwise proceed.

Step 3. Compute $y_{i}=N\left[K_{i}\left(x_{k}\right)+C_{i}\left(x_{k}\right)\right]$.
Step 4. If $\left|y_{k}\right|^{2}>c$ set $\varepsilon_{k}=\varepsilon, s_{k}=y_{k}$ and GO TO Step 6; otherwise proceed.

Step 5. Replace ε by $\varepsilon / 2$ and RETURN to Step 3.
Step 6. If there exists i such that $a_{i} s_{k}<0$, define $\bar{\alpha}_{k}$ by

$$
\bar{x}_{k}=-\max _{1 \leqslant i \leqslant m}\left\{\left.\frac{b_{i}-a_{i} x_{k}}{a_{i} s_{k}} \right\rvert\, a_{i} s_{k}<0\right\} .
$$

If no such i exists, set $\vec{x}_{k}=\infty$.
Step 7. Find $\alpha_{k} \in\left[0, \bar{\alpha}_{k}\right], \alpha_{k}<\alpha$ such that there exists

$$
z_{k} \in K_{0}\left(x_{k}-\alpha_{k} s_{k}\right) \text { with } z_{k} s_{k}=0
$$

If no such α_{k} exists, set $\alpha_{k}=\bar{\alpha}_{k}$. (It will be shown in Lemma 6.5 that $0<\alpha_{k}<\infty$.)

Step 8. Define $x_{k+1}=x_{k}-x_{k} s_{k}$. Increment k by 1 and RETURN to Step 1.
4.2. Step 5 can be replaced by the statement: Replace ε by $\varepsilon / \delta_{\varphi}$, where $\left(\delta_{q}\right)$ is any sequence of numbers such that $\delta_{q}>1, \forall q$ and is uniformly bounded away from 1 . Thus we found it convenient to set $\delta_{4}=10, \forall q$ in similar problems (see [6] and [10].)
4.3. One may also wish to reset $\varepsilon=\varepsilon_{0}$ at the end of Step 2 during the early cycles of the algorithm. This should avoid taking small steps when not "near" the optimal solution. After these iterations we revert back, i.e. set $\varepsilon=\varepsilon_{0}$ in Step 0, but instead of an arbitrary $x_{0} \in X$ we take x_{0} to be the last available x_{k} and proceed from Step 0 onwards without any change from the algorithm as given. This alteration has only an insignificant effect on the proof of convergence of the algorithm.
4.4. Obviously, in practive Step 2 will be replaceced by the statement: STOP, if $\left|y_{0}\right| \leqslant \eta$, where $\eta>0$ is a stopping rule parameter.

4.5. Quadratic Programs

Steps 1 and 3 call for computing y_{i} the projection of the origin on the set $K_{\varepsilon}\left(x_{k}\right)+C_{\varepsilon}\left(x_{k}\right)$, i.e., find $y_{\varepsilon} \in K_{\varepsilon}\left(x_{k}\right)+C_{\varepsilon}\left(x_{k}\right)$ of least norm. This can be accomplished by a special quadratic program. In fact, we seek

$$
\begin{align*}
& \quad \lambda_{i} \geqslant 0, \quad \mu_{j} \geqslant 0, \quad i \in I_{\varepsilon}\left(x_{k}\right), \quad j \in J_{\varepsilon}\left(x_{k}\right), \\
& \sum_{j} \mu_{j}=1, \tag{4.5.1}\\
& \left.\right|_{i \in I_{r}\left(x_{k}\right)} \lambda_{i} a_{i}+\left.\sum_{j \in J_{s}\left(x_{k}\right)} \mu_{j} \nabla f_{j}\left(x_{k}\right)\right|^{2}(\min) .
\end{align*}
$$

We can rewrite (4.5.1) more compactly as follows. Let card $I_{\varepsilon}\left(x_{k}\right)=p$ and card $J_{\varepsilon}\left(x_{k}\right)=q$. Let e be the row vector of dimension q, all of whose components are unity. Finally, let M be the $m \times(p+q)$ matrix whose first p columns are $a_{i}, i \in I_{s}\left(x_{k}\right)$ and the remaining q columns are $\nabla f_{j}\left(x_{k}\right)$, $j \in J_{s}\left(x_{k}\right)$. Now (4.5.1) is the same as

$$
\begin{align*}
& {[0, e] u=1, \quad u \geqslant 0, \quad u \in \mathbb{R}^{p+q},} \\
& u M^{\prime} M u(\min), \tag{4.5.2}
\end{align*}
$$

where M^{\prime} denotes the transpose of M.
Rubin [10] has the same $C_{\varepsilon}\left(x_{k}\right)$ as we have here, but not the same $K_{\varepsilon}\left(x_{k}\right)$. The $K_{\varepsilon}\left(x_{k}\right)$ in Owens [6] is similar to ours here. So any of the methods used in [6] or [10], or even some variations thereof like those in Lawson and Hanson [2] are applicable. Refer to Myhre and Sreedharan [5] for details of computational experience.

4.6. The Line Search

Let us now consider the determination of α_{k} in Step 7 of Algorithm 4.1. By Lemma 6.5 (few pages hence) an alternate definition of α_{k} is

$$
\begin{equation*}
\alpha_{k}=\underset{0 \leqslant x \leqslant \tilde{x}_{k}}{\arg \min } f\left(x_{k}-\alpha S_{k}\right), \tag{4.6.1}
\end{equation*}
$$

where it is shown that $0<\alpha_{k}<\infty$, whenever $s_{k} \neq 0$. The calculation of α_{k} using (4.6.1) can be accomplished by employing a Golden Section search technique as applied to a univariate unimodal function, e.g., the IMSL subroutine ZXGSP. See Owens [6], Myhre and Sreedharan [5] for further details.

Note that α_{k} is not unique, in general. Any α_{k} found in Step 7 is sufficient
to guarantee convergence of $\left(x_{k}\right)$, in the sense that any cluster point of $\left(x_{k}\right)$ is a minimizer of problem (P). Yet, in practice one would generally pick the smallest α_{k} in case of multiple candidates. But if each f_{i} is in addition strictly pseudoconvex then α_{k} is unique and then the whole sequence $\left(x_{k}\right)$ converges to the unique minimizer of problem (P).
4.7. Due to inequality (7.1.1) of Lemma 7.1 below, we will see that members of $K_{i}\left(x_{k}\right)$ may rightly be called ε-subgradients of f in analogy with the convex case. Moreover, s_{k} of Step 4 of the algorithm is the least distance vector between the sets $-K_{i}\left(x_{k}\right)$ and $C_{i}\left(x_{k}\right)$.

5. Optimality Conditions

In this section we extend certain optimality conditions that apply to a convex program. In fact, Theorem 5.9 below, the main result of this section, is a generalization of Theorem 3.1 in Chapter 4 of Dem'yanov and Malozemov [1]. We need this result to show that the stopping criterion in Step 2 of Algorithm 4.1 is well chosen. Throughout this section we do not require f to be coercive on X, though we shall require this hypothesis in our algorithm and for its convergence proof given in Sections 6 and 7. We first record some properties of the index sets I_{8} and J_{i} for use in this and subsequent sections.
5.1 Lemma. To each $x \in X$ and $\varepsilon \geqslant 0$, there is a neighborhood V of x such that

$$
\begin{equation*}
I_{s}(y) \subset I_{s}(x), \quad \forall y \in V \cap X, \tag{5.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{s}(y) \subset J_{:}(x), \quad \forall y \in V \cap X \tag{5.1.2}
\end{equation*}
$$

5.2 Lemma. Given $x \in X$, there exists $\rho>0$ such that

$$
\begin{equation*}
I_{\varepsilon}(x)=I_{0}(x), \quad J_{\varepsilon}(x)=J_{0}(x) \quad \text { for } \quad 0 \leqslant \varepsilon \leqslant \rho \tag{5.2.1}
\end{equation*}
$$

5.3 Lemma. Let $x_{k} \in X$ and $\left(x_{k^{\prime}}\right)$ a subsequence of $\left(x_{k}\right)$ such that $x_{k^{\prime}} \rightarrow x \in X$. Assume that $\left(\varepsilon_{k^{\prime}}\right)$ is a sequence such that $\varepsilon_{k^{\prime}} \downarrow 0$. Then $I_{\varepsilon_{k^{\prime}}}\left(x_{k^{\prime}}\right) \subset I_{0}(x)$ and $J_{\varepsilon_{k}}\left(x_{k^{\prime}}\right) \subset J_{0}(x)$, for all sufficiently large k^{\prime}.
5.4 Lemma. Let $x_{k} \in X$ and $\varepsilon_{k} \downarrow \varepsilon>0$. Let $\left(x_{k^{\prime}}\right)$ be a subsequence of $\left(x_{k}\right)$ such $x_{k^{\prime}} \rightarrow x \in X$. Then $I_{0}(x) \subset I_{c_{k}}\left(x_{k^{\prime}}\right)$ and $J_{0}(x) \subset J_{c_{k}}\left(x_{k^{\prime}}\right)$, for all k^{\prime} sufficiently large.
5.5 Lemma. Given $x \in X$ and $\varepsilon>0$, there exists $\delta>0$ such that

$$
J_{0}(x) \subset J_{6}(y) \text {, whenever }|x-y|<\delta, y \in X .
$$

The above lemmas are Lemmas 5.1 through 5.5 of [12], where complete proofs are provided. Strictly speaking, the statement regarding the sets $J_{0}(x)$ and $J_{c_{k}}\left(x_{k}\right)$ in Lemma 5.3 above, does not appear in Lemma 5.3 of [12]. Its proof is entirely analogous to that concerning the sets $I_{0}(x)$ and $I_{i k^{\prime}}\left(x_{k^{\prime}}\right)$ in Lemma 5.3 of [12].

It is standard practice to call points in X feasible points. Due to the convexity of $X, h \in \mathbb{R}^{d}$ is a feasible direction at $x \in X$ iff there exists some $\alpha>0$ such that $x+\alpha h \in X$, i.e., $x+x h$ is a feasible point. The following lemma characterizing the feasible directions at a feasible point is well known.
5.6 Lemma. Let $x \in X$. Then h is a feasible direction at x iff $a_{i} h \leqslant 0$, $\forall i \in I_{0}(x)$.

We will need the following lemma in the proof of Theorem 5.9 and also in subsequent sections.
5.7 Lemma. Let h be a feasible direction at the feasible point x, and let

$$
\begin{equation*}
\nabla f_{j}(x) h<0, \quad \forall j \in J_{0}(x) \tag{5.7.1}
\end{equation*}
$$

Then there exists $\delta>0$ such that

$$
\begin{equation*}
f(x+\alpha h)<f(x), \quad \forall x \in(0, \delta] \tag{5.7.2}
\end{equation*}
$$

Proof. Since h is a feasible direction at x, due to Lemma 5.6 and the convexity of X, there exists $\delta_{1}>0$ such that $x+\alpha h \in X, 0 \leqslant \alpha \leqslant \delta_{1}$. Because of (5.7.1), there exists $\delta_{2}>0$ such that for $0<\alpha \leqslant \delta_{2}$,

$$
\begin{equation*}
f_{j}(x+\alpha h)<f_{j}(x), \quad \forall j \in J_{0}(x) . \tag{5.7.3}
\end{equation*}
$$

Also there exists a neighborhood V of x, such that

$$
\begin{equation*}
f_{i}(y)<f(x), \quad \forall j \notin J_{0}(x), \quad \forall y \in V \cap X . \tag{5.7.4}
\end{equation*}
$$

Due to (5.7.3) and (5.7.4), there exists $\delta>0, \delta \leqslant \min \left(\delta_{1}, \delta_{2}\right)$ such that

$$
f_{i}(x+\alpha h)<f(x), \quad \forall j=1, \ldots, r, \quad \forall \alpha \in(0, \delta] .
$$

By the definition of f then (5.7.2) follows, completing the proof of the lemma.
5.8 Theorem. Every local minimizer of the problem (P) is a global minimizer. Moreover, if evry f, is strictly pseudoconvex, then at most one global minimizer exists.

Proof. Let $\bar{x} \in X$ be a local minimizer of f on X and let $h \neq 0$ be such that $\bar{x}+h \in X$. We shall show that $f(\bar{x}+h) \geqslant f(\bar{x})$, i.e., \bar{x} is a global minimizer. Due to the convexity of $X, \bar{x}+\alpha h \in X$ for $0 \leqslant \alpha \leqslant 1$. Since \bar{x} is local minimizer, there exists $\delta, 0<\delta \leqslant 1$ such that

$$
\begin{equation*}
f(\bar{x}+\alpha h) \geqslant f(\bar{x}), \quad \forall x \in[0, \delta] . \tag{5.8.1}
\end{equation*}
$$

By Lemma 5.1 we may, by reducing δ if necessary, assume that

$$
\begin{equation*}
J_{0}(\bar{x}+\alpha h) \subset J_{0}(\bar{x}), \quad I_{0}(\bar{x}+\alpha h) \subset I_{0}(\bar{x}) . \quad \forall \alpha \in[0, \delta] . \tag{5.8.2}
\end{equation*}
$$

From (5.8.1) and (5.8.2) we see that

$$
\left.\max _{\{ } f_{j}(\bar{x}+\alpha h) \mid j \in J_{0}(\bar{x})\right\} \geqslant f(\bar{x}) . \quad \forall \alpha \in[0, \delta] .
$$

This shows that there exists $j \in J_{0}(\bar{x})$ such that

$$
f_{i}(\bar{x}+\alpha h) \geqslant f_{i}(\bar{x}), \quad \forall \alpha \in[0, \delta] .
$$

Due to the differentiability of f_{i} at \bar{x}, this yields

$$
\nabla f_{i}(\bar{x}) h \geqslant 0 .
$$

Now invoking the fact that f_{i} is psendoconvex we get

$$
\begin{equation*}
f_{j}(\bar{x}+h) \geqslant f_{i}(\bar{x}) . \tag{5.8.3}
\end{equation*}
$$

So

$$
\begin{equation*}
f(\bar{x}+h) \geqslant f_{i}(\bar{x}+h) \geqslant f_{i}(\bar{x})=f(\bar{x}), \tag{5.8.4}
\end{equation*}
$$

which proves that \bar{x} is a global minimizer.
If every f is strictly pseudoconvex, then strict inequality prevails in (5.8.3) and therefore in (5.8.4) also, proving that \bar{x} is the unique global minimizer. The proof of the theorem is now complete.
5.9 Theorem. $\bar{x} \in X$ solves the prohlem (P) iff $0 \in K_{0}(\bar{x})+C_{0}(\bar{x})$.

Proof. In view of the previous theorem it is sufficient to show that \bar{x} is a local minimizer iff $0 \in K_{0}(\bar{x})+C_{0}(\bar{x})$.
"Only if" part: Assume that $0 \notin K_{0}(\bar{x})+C_{0}(\bar{x})$. We will show that \bar{x} is not a local minimizer. Since $0 \notin K_{0}(\bar{x})+C_{0}(\vec{x})$, there exists $h \in \mathbb{R}^{d}$ such that

$$
u h+v h<0, \quad \forall u \in K_{0}(\bar{x}), \quad \forall x \in C_{0}(\bar{x}) .
$$

This yields that

$$
\begin{equation*}
\nabla f_{i}(\bar{x}) h<0, \quad \forall j \in J_{0}(\bar{x}) \tag{5.9.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i} h \leqslant 0, \quad \forall i \in C_{0}(\bar{x}) \tag{5.9.2}
\end{equation*}
$$

By Lemma 5.6 and (5.9.2) we see that h is a nonzero feasible direction at x, whereas by Lemma 5.7 we see that there exists $\delta>0$ such that

$$
f(\bar{x}+\alpha h)<f(\bar{x}), \quad \forall x \in(0, \delta] .
$$

So \bar{x} is not a constrained local minimizer of f, and the proof of the "Only if" part is complete.
"If" part: We will show that if \bar{x} is not a local minimizer, then $0 \notin K_{0}(\bar{x})+C_{0}(\bar{x})$. Using Lemma 5.1, let us choose a neighborhood V of \bar{x} such that

$$
\begin{equation*}
J_{0}(x) \subset J_{0}(\bar{x}), \quad I_{0}(x) \subset I_{0}(\bar{x}), \quad \forall x \in V \cap X \tag{5.9.3}
\end{equation*}
$$

Also since \bar{x} is not a local minimizer of f, to each $\varepsilon>0$, there exists a feasible direction $h, 0<|h| \leqslant \delta$, such that

$$
\begin{equation*}
f(\bar{x}+h)<f(\bar{x}) \tag{5.9.4}
\end{equation*}
$$

From (5.9.3) and (5.9.4) we see that there exists a nonzero feasible direction h, such that $\bar{x}+h \in V$ and (5.9.4) holds. So

$$
\max \left\{f_{j}(\bar{x}+h) \mid j \in J_{0}(\bar{x})\right\}=f(\bar{x}+h)<f(\bar{x})
$$

Since $f_{i}(\bar{x})=f(\bar{x}), \forall j \in J_{0}(\bar{x})$, this yields the inequality

$$
f_{i}(\bar{x}+h)<f_{i}(\bar{x}), \quad \forall j \in J_{0}(\bar{x}) .
$$

But since each f_{j} is pseudoconvex,

$$
\begin{equation*}
\nabla f_{j}(\bar{x}) h<0, \quad \forall j \in J_{0}(\bar{x}) \tag{5.9.5}
\end{equation*}
$$

Also since h is a feasible direction at \bar{x}, by Lemma 5.6

$$
\begin{equation*}
a_{i} h \leqslant 0, \quad \forall i \in I_{0}(\bar{x}) . \tag{5.9.6}
\end{equation*}
$$

Now if $0 \in K_{0}(\bar{x})+C_{0}(\bar{x})$, then there exists, $\lambda_{j} \geqslant 0, \mu_{i} \geqslant 0, \sum \lambda_{j}=1, j \in J_{0}(\bar{x})$, $i \in I_{0}(\bar{x})$ such that

$$
\begin{equation*}
0=\sum_{i \in J_{0}(\bar{x})} \lambda_{j} \nabla f_{j}(\bar{x})+\sum_{i \in I_{0}(\bar{x})} \mu_{i} a_{i} \tag{5.9.7}
\end{equation*}
$$

Since some λ_{j} is positive, we find, upon taking the inner product of both sides of Eq. (5.9.7) with h and using (5.9.5) and (5.9.6) that $0<0$, which is absurd. The theorem is now completely proven.
5.10 Corollary. Assume further that each f_{j} in the above theorem is strictly pseudoconvex. Then $\bar{x} \in X$ is the unique solution of (P) iff $0 \in K_{0}(\bar{x})+C_{0}(\bar{x})$.

Proof. This follows immediately from Theorems 5.9 and 5.8.
As mentioned earlier, Theorem 5.9 with the assumption that each f_{i} is convex is stated and proved in [1].

6. Feasibility of the Algorithm

In this section we show that the various steps of the algorithm are welldefined and implementable. In this and the subsequent section we will have the standing assumption that f is coercive on X and that f_{1}, \ldots, f_{r} are continuously differentiable, pseudoconvex functions on X.
6.1 Lemma. The stopping criterion in Step 2 of Algorithm 4.1 is well chosen.

Proof. If $y_{0}=0$, then $0 \in K_{0}\left(x_{k}\right)+C_{0}\left(x_{k}\right)$. Theorem 5.9 now shows that x_{k} is a minimizer of f.
6.2 Lemma. Step 5 of the Algorithm 4.1 is not executed infinitely often in amy one itcration.

Proof. If Step 5 is executed infinitely often in a certain iteration, then the index k remains unchanged from that iteration onwards. By Lemma 5.2, there exists arbitrarily small $\varepsilon>0$ such that $I_{\varepsilon}\left(x_{k}\right)=I_{0}\left(x_{k}\right)$ and $J_{e}\left(x_{k}\right)=J_{0}\left(x_{k}\right)$. For such ε then $K_{\varepsilon}\left(x_{k}\right)+C_{6}\left(x_{k}\right)=K_{0}\left(x_{k}\right)+C_{0}\left(x_{k}\right)$. This implies that $y_{0}=y_{\varepsilon}$ for arbitrarily small $\varepsilon>0$. Also $\varepsilon \downarrow 0$, since Step 5 is executed indefinitely. So $y_{s} \rightarrow 0$, which shows that $y_{0}=0$. But in this case we would not have reached Step 5 at all, a contradiction.
6.3 Lemma. If $s_{k} \neq 0$, then $-s_{k}$ is a feasible direction of strict descent at x_{k}.

Proof. Since

$$
a_{i}+s_{k} \in K_{\varepsilon_{k}}\left(x_{k}\right)+C_{c_{k}}\left(x_{k}\right), \quad \forall i \in I_{\varepsilon_{k}}\left(x_{k}\right)
$$

and

$$
\nabla f_{j}\left(x_{k}\right) \in K_{c_{k}}\left(x_{k}\right)+C_{t_{k}}\left(x_{k}\right), \quad \forall j \in J_{\varepsilon_{k}}\left(x_{k}\right),
$$

from the least norm inequality (3.7) we see that

$$
\begin{equation*}
\left(a_{i}+s_{k}\right) s_{k} \geqslant\left|s_{k}\right|^{2}, \quad \forall i \in I_{i x i}\left(x_{k}\right), \tag{6.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla f_{j}\left(x_{k}\right) s_{k} \geqslant\left|s_{k}\right|^{2}, \quad \forall j \in J_{v_{k} k}\left(x_{k}\right) . \tag{6.3.2}
\end{equation*}
$$

Now $I_{c_{k}}\left(x_{k}\right) \supset I_{0}\left(x_{k}\right)$ and $J_{v_{k}}\left(x_{k}\right) \supset J_{0}\left(x_{k}\right)$, so that by (6.3.1) and (6.3.2) we get the inequalities

$$
\begin{equation*}
a_{i} s_{k} \geqslant 0, \quad \forall i \in I_{0}\left(x_{k}\right) \tag{6.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla f_{i}\left(x_{k}\right) s_{k} \geqslant\left|s_{k}\right|^{2}, \quad \forall j \in J_{0}\left(s_{k}\right) . \tag{6.3.4}
\end{equation*}
$$

This shows that $-s_{k}$ is a feasible direction at x_{k} and that inequality (5.7.1) holds with $h=-s_{k}$ in the notation of Lemma 5.7. So by Lemma 5.7 there exists $\delta>0$, such that $x_{k}-\alpha s_{k} \in X$ for $0 \leqslant \alpha \leqslant \delta$ and

$$
f\left(x_{k}-\alpha s_{k}\right)<f\left(x_{k}\right), \quad \forall \alpha \in(0, \delta] .
$$

The proof of the lemma is now complete.
6.4 Lemma. Let $s_{k} \neq 0$. The $\bar{\alpha}_{k}$ defined in Step 6 of Algorithm 4.1 has the property that

$$
\begin{equation*}
\bar{\alpha}_{k}=\sup \left\{\alpha \in \mathbb{R} \mid x_{k}-\alpha s_{k} \in X\right\} . \tag{6.4.1}
\end{equation*}
$$

Proof. Let us define δ by $\delta=\sup \left\{\alpha \in \mathbb{R} \mid x_{k}-\alpha s_{k} \in X\right\}$, then by Lemma 6.3 we see that there exists $\alpha>0$ such that $x_{k}-\alpha s_{k} \in X$, so that $\delta>0$, possibly $+\infty$. Since $x_{k}-\alpha s_{k} \in X$ iff $a_{i} x_{k}-\alpha a_{i} s_{k} \leqslant b_{i}, \forall i=1, \ldots, m$, we now see the equivalence of δ with $\bar{\alpha}_{k}$ as defined in Step 6 of Algorithm 4.1.
6.5 Lemma. Let $s_{k} \neq 0$ and define φ on interval \mathscr{I} by $\varphi(\alpha)=f\left(x_{k}-\alpha s_{k}\right)$, where $\mathscr{I}=[0, \infty)$ if $\bar{\alpha}_{k}=\infty$, and $\mathscr{I}=\left[0, \bar{\alpha}_{k}\right]$ if $\bar{\alpha}_{k}<\infty$. If $\bar{\alpha}_{k}=\infty$, or in case $\bar{\alpha}_{k}<\infty$ and $\bar{\alpha}_{k}$ is not a minimizer of φ on \mathscr{I}, then α_{k}, z_{k} satisfying Step 7 of Algorithm 4.1 exists. Moreover, if α_{k}, z_{k} satisfying Step 7 have been found then α_{k} is a minimizer of φ on \mathscr{I}.

Proof. By Lemma 6.3, 0 is not a minimizer of φ on \mathscr{I}. The hypotheses of this lemma and the fact that f is coercive implies that there exists a minimizer $\alpha_{k} \in\left(0, \bar{\alpha}_{k}\right)$, i.e., there exists $\varepsilon>0$ such that

$$
\begin{equation*}
f\left(y+\lambda s_{k}\right) \geqslant f(y), \quad y=x_{k}-\alpha_{k} s_{k}, \quad|\lambda| \leqslant \varepsilon \tag{6.5.1}
\end{equation*}
$$

By reducing $\varepsilon>0$ if necessary (using Lemma 5.1), there exists $j_{1}, j_{2} \in J_{0}(y)$, ($j_{1}=j_{2}$ permitted) such that

$$
\begin{array}{ll}
f_{j_{1}}\left(y+\lambda s_{k}\right) \geqslant f_{i_{1}}(y), & 0 \leqslant \lambda \leqslant \varepsilon \\
f_{i_{2}}\left(y+\lambda s_{k}\right) \geqslant f_{i_{2}}(y), & -\varepsilon \leqslant \lambda \leqslant 0 .
\end{array}
$$

From this we see that

$$
\nabla f_{j_{1}}(y) s_{k} \geqslant 0 \quad \text { and } \quad \nabla f_{i_{2}}(y) s_{k} \leqslant 0
$$

We now take z_{k} to be an appropriate convex combination of $\nabla f_{j_{1}}(y)$ and $\nabla f_{j_{2}}(y)$ so that $z_{k} s_{k}=0$. Since $j_{1}, j_{2} \in J_{0}(y), z_{k} \in K_{0}(y)$; completing the proof of existence of α_{k} and z_{k} in Step 7 .

To prove the second part of the lemma, suppose that α_{k}, z_{k} satisfying Step 7 has been found. We shall show that α_{k} is positive, and that α_{k} is a minimizer of φ on $\left[0, \bar{\alpha}_{k}\right]$.

Let $y=x_{k}-\alpha_{k} s_{k}$. Then there exists $\lambda_{j} \geqslant 0, \sum \lambda_{j}=1, j \in J_{0}(y)$ such that

$$
z_{k}=\sum \lambda_{j} \nabla f_{j}(y)
$$

Since $z_{k} s_{k}=0$, there exists $j_{1}, j_{2} \in J_{0}(y),\left(j_{1}=j_{2}\right.$ permitted $)$ such that

$$
\begin{equation*}
\nabla f_{j_{1}}(y) s_{k} \geqslant 0 \quad \text { and } \quad \nabla f_{j_{2}}(y) s_{k} \leqslant 0 \tag{6.5.2}
\end{equation*}
$$

Since each f_{j} is pseudoconvex this implies that

$$
\begin{equation*}
f_{j_{1}}\left(y+\lambda s_{k}\right) \geqslant f_{j_{1}}(y), \quad 0 \leqslant \lambda \leqslant \alpha_{k}, \tag{6.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j_{2}}\left(y-\lambda s_{k}\right) \geqslant f_{j_{2}}(y), \quad 0 \leqslant i \leqslant \bar{\alpha}_{k}-\alpha_{k}, \tag{6.5.4}
\end{equation*}
$$

if $\bar{\alpha}_{k}<\infty$. But if $\bar{\alpha}_{k}=\infty$, then

$$
\begin{equation*}
f_{i_{2}}\left(y-i s_{k}\right) \geqslant f_{j_{2}}(y), \quad 0 \leqslant i<\infty . \tag{6.5.5}
\end{equation*}
$$

Using the definition of f and recalling that because $j_{1}, j_{2} \in J_{0}(y), f_{j_{1}}(y)=$ $f_{i 2}(y)=f(y)$, when $\bar{\alpha}_{k}<\infty$ we find from (6.5.3) and (6.5.4) that

$$
\begin{equation*}
f\left(y+\lambda s_{k}\right) \geqslant f(y), \quad 0 \leqslant \lambda \leqslant \alpha_{k}, \tag{6.5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(y-\lambda s_{k}\right) \geqslant f(y), \quad 0 \leqslant \lambda \leqslant \bar{\alpha}_{k}-\alpha_{k} . \tag{6.5.7}
\end{equation*}
$$

When $\bar{\alpha}_{k}=\infty$, (6.5.7) is replaced by

$$
\begin{equation*}
f\left(y-\lambda s_{k}\right) \geqslant f(y), \quad 0 \leqslant \lambda<\infty . \tag{6.5.8}
\end{equation*}
$$

If $\alpha_{k}=0$, then $y=x_{k}$ and (6.5.7) or (6.5.8), whichever is applicable, asserts that $f\left(x_{k}-\lambda s_{k}\right) \geqslant f\left(x_{k}\right), 0 \leqslant \lambda \leqslant \bar{\alpha}_{k}<\infty$ or $0 \leqslant \lambda<\infty$, as the case may be. This contradicts Lemma 6.3, where we proved that $-s_{k}$ is a feasible direction of strict descent at x_{k}. So α_{k} is positive.

Inequalities (6.5.6), (6.5.7), and (6.5.8) assert that if $\bar{\alpha}_{k}<\infty$, then

$$
\varphi(\alpha) \geqslant \varphi\left(\alpha_{k}\right), \quad 0 \leqslant \alpha \leqslant \bar{x}_{k}
$$

whereas if $\bar{\alpha}_{k}=\infty$, then

$$
\varphi(\alpha) \geqslant \varphi\left(\alpha_{k}\right), \quad 0 \leqslant \alpha<\infty
$$

In other words, α_{k} is a minimizer of φ on $\left[0, \bar{\alpha}_{k}\right]$, if $\bar{\alpha}_{k}<\infty$; whereas if $\bar{x}_{k}=\infty$, then α_{k} is a minimizer of φ on $[0, \infty)$.
6.6 Corollary. α_{k} is positive and finite. Moreover, α_{k} is unique if each f_{j} is strictly pseudoconvex.
6.7 Lemma. Let $s_{k} \neq 0$ and $x_{k+1}=x_{k}-\alpha_{k} s_{k}$ as in Step 8 of Algorithm 4.1. Then $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

Proof. This is clear from Lemmas 6.3 and 6.5 .
6.8 Lemma. The sequence $\left(x_{k}\right)$ generated by Algorithm 4.1 is bounded. Moreover, f takes the same value $v=\lim _{k \rightarrow \infty} f\left(x_{k}\right)$ at all cluster points of $\left(x_{k}\right)$.

Proof. By Lemma 6.7, the sequence $\left(f\left(x_{k}\right)\right)$ is clearly bounded from above. Since f is coercive on X, it follows that $\left(x_{k}\right)$ is bounded. Since the sequence $\left(f\left(x_{k}\right)\right)$ is monotone decreasing, all its subsequences converge to the same limit v. So, if $\left(x_{k^{\prime}}\right)$ is a subsequence of $\left(x_{k}\right)$ such that $x_{k^{\prime}} \rightarrow x$, then $f(x)=v$.

7. Convergence of the Algorithm

In the previous section we showed that the various steps in the algorithm are implementable and that f decreases at each iteration. We now turn to the task of proving that the algorithm converges to a solution of the problem in the sense that every cluster point of the generated sequence is a minimizer of f. The reason for assuming that f is coercive is to ensure that $\left(x_{k}\right)$ has at least one cluster point as guaranteed by Lemma 6.8. In fact, any hypotheses on f and X which will do this is sufficient, say for example that the set $\left\{x \in X \mid f(x) \leqslant f\left(x_{k}\right)\right\}$ is bounded, for some k.
7.1 Lemma. Let $\varepsilon \geqslant 0$ and $u \in K_{s}(x)$. Suppose that $x+h \in X$ and $u h \geqslant 0$. Then

$$
\begin{equation*}
f(x+h) \geqslant f(x)-\varepsilon . \tag{7.1.1}
\end{equation*}
$$

Proof. Since there exists $\hat{\lambda}_{j} \geqslant 0, \sum \lambda_{j}=1, j \in J_{i}(x)$ such that

$$
u=\sum_{j \in J_{1}(x)} \lambda_{j} \nabla f_{j}(x),
$$

we see that there is some $j \in J_{i}(x)$ with the property $\nabla f_{j}(x) \geqslant 0$. Since f, is pseudoconvex, $f_{j}(x+h) \geqslant f_{j}(x) \geqslant f(x)-\varepsilon$. Hence $f(x+h) \geqslant f(x)-\varepsilon$.
7.2 Corollary. Let $u \in K_{0}(x), \quad x+h \in X$ and $u h \geqslant 0$. Then $f(x+h) \geqslant f(x)$.
7.3 Lemma. Let 0 be a cluster point of the sequence $\left(s_{k}\right)$ and \bar{x} any cluster point of $\left(x_{k}\right)$. Then \bar{x} is a minimizer of f.

Proof. We pass to corresponding subsequences $\left(s_{k}\right)$ and $\left(x_{k}\right)$ such that $s_{k^{\prime}} \rightarrow 0$ and $x_{k^{\prime}} \rightarrow x \in X$. We shall show that both x and \bar{x} are minimizers of f.

Let $y \in X$ be arbitrary. Then

$$
a_{i} y \leqslant b_{i}=a_{i} x, \quad \forall i \in I_{0}(x) .
$$

So

$$
\begin{equation*}
a_{i}(y-x) \leqslant 0, \quad \forall i \in I_{0}(x) . \tag{7.3.1}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
s_{k^{\prime}}=u_{k^{\prime}}+w_{k^{\prime}}, \quad u_{k^{\prime}} \in K_{t_{k^{\prime}}}\left(x_{k^{\prime}}\right), \quad w_{k^{\prime}} \in C_{t_{k^{\prime}}}\left(x_{k^{\prime}}\right) . \tag{7.3.2}
\end{equation*}
$$

Note that $\varepsilon_{k^{\prime}} \downarrow 0$, so that by Lemma 5.3 , for all sufficiently large k^{\prime} we have

$$
\begin{equation*}
I_{v_{k} k}\left(x_{k^{\prime}}\right) \subset I_{0}(x) \quad \text { and } \quad J_{i_{k} k}\left(x_{k^{\prime}}\right) \subset J_{0}(x) \tag{7.3.3}
\end{equation*}
$$

The first inclusion in (7.3.3) yields the containment

$$
\begin{equation*}
C_{c_{k}}\left(x_{k^{\prime}}\right) \subset C_{0}(x), \tag{7.3.4}
\end{equation*}
$$

whereas the second inclusion in (7.3.3) gives the containment

$$
\begin{equation*}
K_{v_{k}}\left(x_{k^{\prime}}\right) \subset \operatorname{conv}\left\{\nabla f_{j}\left(x_{k^{\prime}}\right) \mid j \in J_{0}(x)\right\} . \tag{7.3.5}
\end{equation*}
$$

So, there exists $\dot{\lambda}_{j, k^{\prime}} \geqslant 0, \sum_{j} \lambda_{j, k^{\prime}}=1, j \in J_{0}(x)$ such that

$$
u_{k^{\prime}}=\sum_{j \in J_{0}(x)} \lambda_{j, k^{\prime}} \nabla f_{j}\left(x_{k^{\prime}}\right) .
$$

By passing to a further subsequence, again denoted by $\left(k^{\prime}\right)$, we can require $i_{, j, k^{\prime}} \rightarrow \lambda_{j}$ as $k^{\prime} \rightarrow \infty$, for each $j \in J_{0}(x)$. By the continuity of ∇f_{j} at x, then

$$
\begin{equation*}
u_{k^{\prime}} \rightarrow u=\sum_{i \in J_{0}(x)} i_{j} \nabla f_{i}(x) \in K_{0}(x) \tag{7.3.6}
\end{equation*}
$$

By (7.3.4), $w_{k^{\prime}} \in C_{0}(x)$ so that by (7.3.1) we see that

$$
\begin{equation*}
w_{k^{\prime}}(y-x) \leqslant 0, \quad \forall k^{\prime} \tag{7.3.7}
\end{equation*}
$$

Note that in case $I_{0}(x)$ is empty then $C_{0}(x)=\{0\}$ and every $w_{k^{\prime}}=0$, so (7.3.7) holds in this case also. By (7.3.2) we now see that

$$
\begin{aligned}
u_{k^{\prime}}(y-x) & =s_{k^{\prime}}(y-x)-u_{k^{\prime}}(y-x) \\
& \geqslant s_{k}(y-x), \quad \text { by } \quad(7.3 .7) .
\end{aligned}
$$

Allowing $k^{\prime} \rightarrow \infty$, since $s_{k^{\prime}} \rightarrow 0$ we arrive at the relation $u(y-x) \geqslant 0$. Since $u \in K_{0}(x)$, by Corollary 7.2 we now conclude that $f(x) \leqslant f(y)$. But since x and \bar{x} are both cluster points of $\left(x_{k}\right)$, by Lemma 6.8 we see that $f(x)=f(\bar{x})$, completing the proof of the lemma.
7.4 Lemma. If the sequence $\left(\varepsilon_{k}\right)$ defined in Algorithm 4.1 converges to zero and \bar{x} is any cluster point of $\left(x_{k^{\prime}}\right)$ then \bar{x} is a minimizer of f.

Proof. By Lemma 6.2, Step 5 of the algorithm is executed finitely often in each iteration. Hence a subsequence $\left(\varepsilon_{k^{\prime}}\right)$ of $\left(\varepsilon_{k}\right)$ can be found such that

$$
\varepsilon_{k^{\prime}+1}=\varepsilon_{k} / 2 \quad \text { and } \quad\left|y_{k_{k}}\right|^{2} \leqslant \varepsilon_{k^{\prime}},
$$

where y_{ε} was defined in Step 3 of the algorithm. Since $\varepsilon_{k} \rightarrow 0, y_{\varepsilon_{k}} \rightarrow 0$. We replace all the occurrences of s_{k}, in the proof of the previous lemma by $y_{t_{k}}$ and repeat the reasoning therein to see the validity of the present lemma.

7.5 Lemma. The sequence $\left(s_{k}\right)$ is bounded.

Proof. Since $K_{t \cdot k}\left(x_{k}\right)+C_{v_{k}}\left(x_{k}\right) \supset K_{0}\left(x_{k}\right)$,

$$
\begin{aligned}
\left|s_{k}\right| & =\left|N\left[K_{x_{k}}\left(x_{k}\right)+C_{x_{k}}\left(x_{k}\right)\right]\right|, \\
& \leqslant\left|N\left[K_{0}\left(x_{k}\right)\right]\right|, \\
& \leqslant \max _{\{ }\left\{\nabla f_{j}\left(x_{k}\right)| | j \in J_{0}\left(x_{k}\right)\right\}, \\
& \leqslant \max _{\{ }\left\{\left|\nabla f_{j}\left(x_{k}\right)\right| \mid 1 \leqslant j \leqslant r\right\}, \\
& \leqslant \max _{x \in X_{0}} \max _{1 \leqslant j \leqslant r}\left|\nabla f_{j}(x)\right|,
\end{aligned}
$$

where X_{0} is the closure of the set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. The right-hand side of the above inequality is finite due to the fact that each f_{j} is of class C^{1} on X_{0}, which by virtue of Lemma 6.8 is compact.
7.6 Lemma. If the sequence $\left(s_{k}\right)$ is bounded away from zero, then the sequence $\left(\alpha_{k}\right)$ converges to zero.

Proof. Suppose that $x_{k} \nrightarrow 0$. Since $\alpha_{k}\left|s_{k}\right|=\left|x_{k+1}-x_{k}\right|$, by Lemma 6.8 we see that $\alpha_{k}\left|s_{k}\right|$ is bounded above. But $\left(s_{k}\right)$ is bounded away from zero and hence the sequence $\left(\alpha_{k}\right)$ is bounded. Let us then pass to corresponding subsequences $\left(s_{k^{\prime}}\right),\left(\alpha_{k^{\prime}}\right)$ and $\left(x_{k^{\prime}}\right)$ such that $s_{k^{\prime}} \rightarrow s \neq 0, \alpha_{k^{\prime}} \rightarrow \alpha>0$ and $x_{k} \rightarrow x \in X$. Now

$$
x_{k^{\prime}+1}=x_{k}-\alpha_{k^{\prime}} s_{k^{\prime}} \rightarrow x-\alpha s
$$

So $x-\alpha s$ and x are both cluster points of the sequence $\left(x_{k}\right)$. By Lemma 6.8, we then have

$$
\begin{equation*}
f(x-\alpha s)=f(x) \tag{7.6.1}
\end{equation*}
$$

Since $\left(s_{k}\right)$ is bounded away from zero, form Algorithm 4.1 we see that there exists $\varepsilon>0$ such that $\varepsilon_{k}=\varepsilon$ for all sufficiently large k. Passing to a further subsequence of (k^{\prime}), again denoted by $\left(k^{\prime}\right)$, we may assume that

$$
\begin{equation*}
I_{8}\left(x_{k^{\prime}}\right)=I \quad \text { and } \quad J_{z}\left(x_{k^{\prime}}\right)=J, \quad \forall k^{\prime} \tag{7.6.2}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
s_{k^{\prime}}=N\left[K_{r:}\left(x_{k^{\prime}}\right)+C_{k^{\prime}}\left(x_{k^{\prime}}\right)\right] \tag{7.6.3}
\end{equation*}
$$

Since $s_{k^{\prime}} \in K_{t}\left(x_{k^{\prime}}\right)+C_{v}\left(x_{k^{\prime}}\right)$, we see that $a_{i}+s_{k^{\prime}} \in K_{i}\left(x_{k^{\prime}}\right)+C_{s}\left(x_{k^{\prime}}\right), \forall i \in I$. Also $\nabla f_{j}\left(x_{k^{\prime}}\right) \in K_{c}\left(x_{k^{\prime}}\right) \subset K_{\varepsilon}\left(x_{k^{\prime}}\right)+C_{\varepsilon}\left(x_{k^{\prime}}\right), \forall j \in J$. So, by (3.7) we get

$$
\begin{equation*}
\left(a_{i}+s_{k^{\prime}}\right) s_{k^{\prime}} \geqslant\left|s_{k^{\prime}}\right|^{2}, \quad \forall i \in I \tag{7.6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla f_{j}\left(x_{k^{\prime}}\right) s_{k^{\prime}} \geqslant\left|s_{k^{\prime}}\right|^{2}, \quad \forall j \in J \tag{7.6.5}
\end{equation*}
$$

Allowing $k^{\prime} \rightarrow \infty$ in (7.6.4) and (7.6.5) we arrive at the inequalities

$$
\begin{equation*}
a_{i} s \geqslant 0, \quad \forall i \in I \tag{7.6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla f_{i}(x) s \geqslant|s|^{2}, \quad \forall j \in J \tag{7.6.7}
\end{equation*}
$$

But now $\varepsilon>0$ and $x_{k^{\prime}} \rightarrow x$. So by Lemma 5.4 and (7.6.2) we see that $I_{0}(x) \subset I$ and $J_{0}(x) \subset J$. From (7.6.6) and (7.6.7) we get the inequalities

$$
\begin{equation*}
a_{i} s \geqslant 0, \quad \forall i \in I_{0}(x), \tag{7.6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla f_{j}(x) s \geqslant|s|^{2}, \quad \forall j \in J_{0}(x) . \tag{7.6.9}
\end{equation*}
$$

In view of Lemma 5.6 and inequality (7.6.8), $-s$ is a nonzero feasible direction at x. This fact combined with inequality (7.6.9) and Lemma 5.7 shows that there exists $\delta>0$ such that

$$
\begin{equation*}
f(x-\lambda x)<f(x), \quad \forall \lambda \in(0, \delta] . \tag{7.6.10}
\end{equation*}
$$

By Step 7 of Algorithm 4.1 and Lemma 6.5

$$
\begin{equation*}
f\left(x_{k^{\prime}}-x_{k^{\prime}} \cdot s_{k^{\prime}}\right) \leqslant f\left(x_{k^{\prime}}-\lambda s_{k^{\prime}}\right), \quad \forall \lambda \in\left[0, \bar{\alpha}_{k^{\prime}}\right] \cap[0, \infty) \tag{7.6.11}
\end{equation*}
$$

Note that $\bar{\alpha}_{k^{\prime}} \geqslant \alpha_{k^{\prime}}$ and so $\left(\bar{\alpha}_{k^{\prime}}\right)$ is also bounded away from zero. Hence from (7.6.10) and (7.6.11) we conclude that there exists $\dot{\lambda}, 0<\lambda \leqslant \delta$ satisfying (7.6.11) and the condition

$$
\begin{equation*}
f\left(x_{k^{\prime}}-x_{k^{\prime}} s_{k^{\prime}}\right) \leqslant f\left(x_{k^{\prime}}-\lambda s_{k^{\prime}}\right), \quad \forall k^{\prime} \tag{7.6.12}
\end{equation*}
$$

Allowing $k^{\prime} \rightarrow \infty$ in (7.6.12) yields the inequality

$$
f(x-\alpha s) \leqslant f(x-\lambda s),
$$

which by virtue of (7.6.10) shows that $f(x-\alpha s)<f(x)$, contradicting (7.6.1). So we have to conclude that $\left(\alpha_{k}\right)$ converges to zero, and the proof of the lemma is complete.
7.7. It is of some interest to remark that, if all the f_{j} 's were known to be strictly pseudoconvex, then a simpler argument may be used to complete the proof of previous lemma after having arrived at equation (7.6.1). For purposes of clarity, we isolate this fact as a lemma.
7.8 Lemma. Assume that each f_{j} is strictly pseudoconvex on X and that x, $x-h \in X, h \neq 0$, with $f(x)=f(x-h)$. Then there exists $\mu \in(0,1)$ such that $f(x-\mu h)<f(x)$.

Proof. If not, $f(x-\mu h) \geqslant f(x), \forall \mu \in[0,1]$. By Lemma 5.1 we can choose $\delta \in(0,1)$ such that $J_{0}(x-\mu h) \subset J_{0}(x), \quad \forall \mu \in[0, \delta]$. Since $f(x-\mu h) \geqslant f(x)$, there exists $j \in J_{0}(x)$ such that $f_{j}(x-\mu h) \geqslant f_{j}(x)$, which implies that $\nabla f_{j}(x) h \leqslant 0$. Due to the strict pseudoconvexity of f_{j}, we now have $f_{i}(x-h)>f_{i}(x)$, resulting in a contradiction so that the lemma follows.
7.9. Under the stronger assumptions in the above lemma, we simply point out that, due to the definition of α_{k},

$$
\begin{equation*}
f\left(x_{k}-\alpha_{k^{\prime}} s_{k^{\prime}}\right) \leqslant f\left(x_{k^{\prime}}-\lambda s_{k^{\prime}}\right), \quad \forall i \in\left[0, \bar{\alpha}_{k^{\prime}}\right] \cap[0, \infty) . \tag{7.9.1}
\end{equation*}
$$

By Lemma 7.8 we can choose $\mu, 0<\mu<1$ such that $f(x-\mu \alpha s)<f(x)$. Then by (7.9.1)

$$
f\left(x_{k^{\prime}}-\alpha_{k^{\prime}} s_{k^{\prime}}\right) \leqslant f\left(x_{k}^{\prime}-\mu x_{k^{\prime}} s_{k^{\prime}}\right)
$$

Allowing $k^{\prime} \rightarrow x$, we get $f(x-\alpha s) \leqslant f(x-\mu \alpha s)$ and so $f(x-\alpha s)<f(x)$, which contradicts (7.6.1).

7.10 Lemma. Suppose that the following hold.

(i) There exists $:>0$ such that $\varepsilon_{k} \geqslant \varepsilon$ for all k.
(ii) There exists $\eta>0$ such that $\left|s_{k}\right| \geqslant \eta$ for all k.
(iii) Some subsequence $\left(x_{k}\right)$ of $\left(x_{k}\right)$ converges to x.

Then there is a subsequence of $\left(x_{k^{\prime}}\right)$, again denoted $\left(x_{k^{\prime}}\right)$, such that $I_{0}\left(x_{k^{\prime}}\right)=I_{0}(x)$ for all k^{\prime}.

Proof. This is Corollary 5.22 in [11] and follows immediately from Lemma 5.21 in [11].
7.11 Theorem. Algorithm 4.1 generates either a terminating sequence whose last term is a minimizer of problem (P), or an infinite sequence such that every cluster point of this sequence is a minimizer of problem (P).

Proof. In view of Lemma 6.1 we need only consider the case in which Algorithm 4.1 generates an infinite sequence $\left(x_{k}\right)$. In this case $s_{k} \neq 0$ for every k. We intend to show that 0 is a cluster point of $\left(s_{k}\right)$, so that by Lemma 7.3 the proof of the theorem would then be complete. With a view of arriving at a contradiction let us assume that there exists $\eta>0$ such that $\left|s_{k}\right| \geqslant \eta$ for every k. In view of Lemma 7.4, we can also assume that $\varepsilon_{k}=\varepsilon$, for every k. The sequences $\left(x_{k}\right)$ and $\left(s_{k}\right)$ are bounded by virtue of Lemmas 6.8 and 7.5 , respectively. So we may pass to corresponding convergent subsequences such that $x_{k^{\prime}} \rightarrow x \in X$ and $s_{k^{\prime}} \rightarrow s \neq 0$. By Lemma 7.6, $\left(\alpha_{k^{\prime}}\right)$ converges to zero and since $x_{k^{\prime}+1}=x_{k^{\prime}}-x_{k^{\prime}} s_{k^{\prime}}$, we find that $x_{k^{\prime}+1} \rightarrow x$. Passing to a subsequence of (k^{\prime}), again denoted by (k^{\prime}), we may suppose that there exist index sets I, J, and J^{\prime} such that

$$
\begin{equation*}
I_{i}\left(x_{k^{\prime}}\right)=I, \quad J_{x}\left(x_{k^{\prime}}\right)=J, \quad J_{0}\left(x_{k^{\prime}+1}\right)=J^{\prime} \tag{7.11.1}
\end{equation*}
$$

for all k^{\prime}. By Lemmas 5.1 and 5.4 we see that $J_{0}\left(x_{k^{\prime}+1}\right) \subset J_{0}(x) \subset J_{i}\left(x_{k^{\prime}}\right)$, for sufficiently large k^{\prime}. In view of (7.11.1), we therefore have $J^{\prime} \subset J$.

Now using Lemma 7.10 twice, since $x_{k^{\prime}} \rightarrow x$ and $x_{k^{\prime}+1} \rightarrow x$, we can find yet another subsequence, as usual denoted again by (k^{\prime}), such that

$$
\begin{equation*}
I_{0}\left(x_{k^{\prime}}\right)=I_{0}(x)=I_{0}\left(x_{k^{\prime}+1}\right), \tag{7.11.2}
\end{equation*}
$$

for all k^{\prime}. From (7.11.2) we deduce that $\alpha_{k^{\prime}}<\bar{x}_{k^{\prime}}$ for every k^{\prime}; for if $x_{k^{\prime}}=\bar{x}_{k^{\prime}}$, some nonbinding constraint at $x_{k^{\prime}}$ becomes binding at $x_{k^{\prime}+1}$ and so $I_{0}\left(x_{k}\right) \neq I_{0}\left(x_{k^{\prime}+1}\right)$. Thus for each k^{\prime}, the vector $z_{k^{\prime}}$ specified in Step 7 of the algorithm exists, i.c.,

$$
\begin{equation*}
z_{k^{\prime}} \in K_{0}\left(x_{k^{\prime}+1}\right) \quad \text { and } \quad z_{k} \cdot s_{k^{\prime}}=0 \tag{7.11.3}
\end{equation*}
$$

Now

$$
\begin{align*}
z_{k^{\prime}} \in K_{0}\left(x_{k^{\prime}+1}\right) & =\operatorname{conv}\left\{\nabla f_{i}\left(x_{k^{\prime}+1}\right) \mid j \in J^{\prime}\right\}, \\
& \subset \operatorname{conv}\left\{\nabla f_{j}\left(x_{k^{\prime}+1}\right) \mid j \in J^{\prime}\right\} \tag{7.11.4}
\end{align*}
$$

So there exist $\lambda_{j, k^{\prime}} \geqslant 0, \sum_{j} \lambda_{j, k^{\prime}}=1, j \in J$ such that

$$
\begin{equation*}
z_{k^{\prime}}=\sum_{j \in J} \lambda_{j, k^{\prime}} \nabla f_{j}\left(x_{k^{\prime}+1}\right) \tag{7.11.5}
\end{equation*}
$$

By passing to yet another subsequence, denoted again by (k^{\prime}), we can require $\lambda_{1, k^{\prime}} \rightarrow \lambda_{\text {, for }}$ forery $j \in J$. Let us define z and $\hat{z}_{k^{\prime}}$ by

$$
\begin{equation*}
z=\sum_{j \in J} i_{j} \nabla f_{j}(x), \tag{7.11.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{z}_{k^{\prime}}=\sum_{j \in J} i_{j} \nabla f_{j}\left(x_{k^{\prime}}\right) \tag{7.11.7}
\end{equation*}
$$

Since $\left(x_{k^{\prime}}\right)$ and $\left(x_{k^{\prime}+1}\right)$ converge to x, by the continuity of ∇f_{j} at x, we see that both the sequences $\left(z_{k}\right)$ and (\hat{z}_{k}) converge to z. Observe that

$$
\begin{equation*}
\hat{z}_{k^{\prime}} \in K_{r}\left(x_{k^{\prime}}\right) \subset K_{\varepsilon}\left(x_{k^{\prime}}\right)+C_{\varepsilon}\left(x_{k^{\prime}}\right) \tag{7.11.8}
\end{equation*}
$$

and by Step 3 of Algorithm 4.1

$$
\begin{equation*}
s_{k^{\prime}}=N\left[K_{k}\left(x_{k^{\prime}}\right)+C_{r}\left(x_{k^{\prime}}\right)\right] . \tag{7.11.9}
\end{equation*}
$$

So, by (3.7), we get the inequality

$$
\begin{equation*}
\hat{z}_{k^{\prime}} \cdot s_{k^{\prime}} \geqslant\left|s_{k^{\prime}}\right|^{2}, \quad \forall k^{\prime} . \tag{7.11.10}
\end{equation*}
$$

Allowing $k^{\prime} \rightarrow \infty$, we see that

$$
\begin{equation*}
z s \geqslant|s|^{2} \geqslant n^{2}>0 \tag{7.11.11}
\end{equation*}
$$

Finally, we allow $k^{\prime} \rightarrow \infty$ in the second half of (7.11.3) to get the statement $z s=0$, contradicting (7.11.11). So we conclude that 0 is a cluster point of $\left(s_{k}\right)$, thus completing the proof of the theorem.
7.12 Corollary. Suppose that each f_{j} is strictly pseudoconvex. Then in the non-terminating case the whole sequence $\left(x_{k}\right)$ converges to \bar{x} the minimizer of problem (P).

Proof. Every cluster point \bar{x} of $\left(x_{k}\right)$ is a minimizer of f on X. But due to the strict pseudoconvexity of the f 's, \bar{x} is unique. So the sequence' $\left(x_{k}\right)$ has a unique cluster point \bar{x} in X_{0}, the closure of $\left\{x_{0}, x_{1}, \ldots\right\}$, which is compact by Lemma 6.8 . Hence $\left(x_{k}\right)$ converges to \bar{x}.

ACKNOWLEDGMENT

Thanks are due to the referee for his helpful remarks.

References

1. V. F. Dem yanoy and V. N. Malozemov, "Introduction to Minimax." Wiley, New York, 1974.
2. C. L. Lawson and R. J. Hanson, "Solving Least Squares Problems," Prentice-Hall, Englewood Cliffs, N. Y., 1974
3. C. Lemarechal, An extension of Davidon methods to nondifferentiable problems, Math. Programming Stud. 3 (1975), 95-109.
4. O. L. Mangasarian, "Nonlinear programming," McGraw Hill, New York, 1969.
5. J. Myhre and V. P. Srffidharan. A nondifferentiable optimization algorithm for a logistic model, under preparation.
6. R. W. Owens. Implementation of subgradient projection algorithm II, Internat. J. of Comput. Math. 16 (1984), 57-69.
7. E. Polak, "Computational Methods in Optimization," Academic Press, New York, 1971.
8. J. Ponstein, Seven kinds of convexity, SIAM Rev. 9 (1967), 115-119.
9. J. B. Rosen. The gradient projection method for nonlinear programming, Part I: Linear constraints. J. SIAM 8 (1960), 181-217.
10. P. Rebis, Implementation of a subgradient projection algorithm, Internal. J. Comput. Math. 12 (1982), 321328.
11. V. P. Srefpharan, A subgradient projection algorithm, J. Approx. Theory 35 (1982), 111-126.
12. V. P. Skffidaran. Subgradient projection algorithm II, J. Approx. Theory 41 (1984), 217-243.
13. V. P. Srefidaran, Extensions of subgradient projection algorithms, J. approx. Theory 47 (1986), 228-239.
14. P. WOLFE. A method of conjugate subgradients for minimizing nondifferentiable functions, Math. Programming Stud. 3 (1975), 145-173.
